使用逼真的仿真引擎,车辆可以学习在现实世界中驾驶并从接近碰撞
使用逼真的仿真引擎,车辆可以学习在现实世界中驾驶并从接近碰撞的情况中恢复过来。
麻省理工学院发明的一种模拟系统,用于训练无人驾驶汽车,创造出具有无限转向可能性的逼真的世界,从而帮助汽车在驶入真实街道之前学会驾驭各种最坏的情况。
自动驾驶汽车的控制系统或“控制器”在很大程度上依赖于人类驾驶员驾驶轨迹的真实数据集。他们从这些数据中学习了如何在各种情况下模拟安全转向控制。但是,幸运的是,来自危险“边缘案例”(例如险些坠毁或被迫离开公路或进入其他车道)的真实数据很少。
一些称为“仿真引擎”的计算机程序旨在通过绘制详细的虚拟道路来模拟这些情况,以帮助训练控制器进行恢复。但是,从未展示过从模拟中学到的控制能够在全尺寸车辆上实现。
麻省理工学院的研究人员使用他们的真实感模拟器解决了这个问题,该模拟器称为“自治的虚拟图像合成和转换(VISTA)”。它仅使用人类在道路上行驶时捕获的一个很小的数据集,从车辆在现实世界中可能遇到的轨迹中合成了几乎无限的新视点。控制器在不发生碰撞的情况下所经过的距离会得到奖励,因此它必须自己学习如何安全地到达目的地。通过这样做,车辆学会了安全地导航遇到的任何情况,包括在车道之间转弯或从近弯后恢复后重新获得控制。
在测试中,在VISTA模拟器中经过安全培训的控制器能够安全地部署到一辆全尺寸的无人驾驶汽车上,并能够在以前看不见的街道上导航。通过将汽车定位在模仿各种接近碰撞情况的越野方向上,控制器还能够在几秒钟内成功地将汽车恢复到安全的行驶轨迹。 描述该系统的 论文已发表在 IEEE Robotics and Automation Letters中 ,并将在即将于5月举行的ICRA会议上发表。
本文由搜财资讯网发布,不代表搜财资讯网立场,转载联系作者QQ 841991949,并注明出处:https://www.ncrw.com.cn/news/jiaoyu/26166.html